1	(i)	$\arcsin x = \pi/6 \Longrightarrow x = \sin \pi/6$	M1	
		$= \frac{1}{2}$	A1	allow unsupported answers
			[2]	
	(ii)	$\sin \pi/4 = \cos \pi/4 = 1/\sqrt{2}$		
		\Rightarrow arcsin $(1/\sqrt{2}) = \arccos(1/\sqrt{2})$		
		$\Rightarrow x = 1/\sqrt{2}$	B2	o.e. e.g. $\sqrt{2/2}$, must be exact; SCB1 0.707
			[2]	

2 (i) $a = 0, b = 3, c = 2$	B(2,1,0)	or $a = 0, b = -3, c = -2$
(ii) $a = 1, b = -1, c = 1$ or $a = 1, b = 1, c = -1$	B(2,1,0) [4]	

3 ⇒	Let $\arcsin x = \theta$ $x = \sin \theta$ $\theta = \arccos y \Rightarrow y = \cos \theta$ $\sin^2 \theta + \cos^2 \theta = 1$	M1 M1	
\Rightarrow	$\sin \theta + \cos \theta = 1$ $x^2 + y^2 = 1$	E1 [3]	

4(i) period 180°	B1 [1]	condone $0 \le x \le 180^\circ$ or π
(ii) one-way stretch in <i>x</i> -direction scale factor $\frac{1}{2}$ translation in <i>y</i> -direction through $\begin{pmatrix} 0\\1 \end{pmatrix}$	M1 A1 M1 A1 [4]	[either way round] condone 'squeeze', 'contract' for M1 stretch used and s.f $\frac{1}{2}$ condone 'move', 'shift', etc for M1 'translation' used, +1 unit $\begin{pmatrix} 0\\1 \end{pmatrix}$ only is M1 A0
(iii) 2 -180 180	M1 B1 A1 [3]	correct shape, touching <i>x</i> -axis at -90°, 90° correct domain (0, 2) marked or indicated (i.e. amplitude is 2)

5 (i) bounds $-\pi + 1$, $\pi + 1$ $\Rightarrow -\pi + 1 < f(x) < \pi + 1$	B1B1 B1cao [3]	or < y < or ($-\pi$ + 1, π + 1)	not < <i>x</i> <, not 'between'
(ii) $y = 2\arctan x + 1 x \leftrightarrow y$ $x = 2\arctan y + 1$	M1	attempt to invert formula	one step is enough, i.e. $y - 1 = 2\arctan x$ or $x - 1 = 2\arctan y$
$\Rightarrow \frac{x-1}{2} = \arctan y$	A1	or $\frac{y-1}{2} = \arctan x$	need not have interchanged x and y at this stage
$\Rightarrow \qquad y = \tan(\frac{x-1}{2}) \Rightarrow f^{-1}(x) = \tan(\frac{x-1}{2})$	A1		allow $y = \dots$
	B1 B1	reasonable reflection in $y = x$	curves must cross on $y = x$ line if present (or close enough to imply intention) curves shouldn't touch or cross in the third quadrant
	[5]	(1, 0) intercept indicated.	

6(i) At P, $x \cos 3x = 0$ $\Rightarrow \cos 3x = 0$ $\Rightarrow 3x = \pi/2, 3\pi/2$ $\Rightarrow x = \pi/6, \pi/2$ So P is $(\pi/6, 0)$ and Q is $(\pi/2, 0)$	M1 M1 A1 A1 [4]	or verification $3x = \pi/2$, $(3\pi/2)$ dep both Ms condone degrees here
(ii) $\frac{dy}{dx} = -3x \sin 3x + \cos 3x$ At P, $\frac{dy}{dx} = -\frac{\pi}{2} \sin \frac{\pi}{2} + \cos \frac{\pi}{2} = -\frac{\pi}{2}$ At TPs $\frac{dy}{dx} = -3x \sin 3x + \cos 3x = 0$ $\Rightarrow \cos 3x = 3x \sin 3x$ $\Rightarrow 1 = 3x \sin 3x / \cos 3x = 3x \tan 3x$ $\Rightarrow x \tan 3x = 1/3 *$	M1 B1 A1 M1 A1cao M1 E1 [7]	Product rule $d/dx (\cos 3x) = -3 \sin 3x$ cao (so for $dy/dx = -3x\sin 3x$ allow B1) mark final answer substituting their $-\pi/6$ (must be rads) $-\pi/2$ $dy/dx = 0$ and $\sin 3x / \cos 3x = \tan 3x$ used www
(iii) $A = \int_{0}^{\pi/6} x \cos 3x dx$ Parts with $u = x$, $dv/dx = \cos 3x$ $du/dx = 1$, $v = 1/3 \sin 3x$ $\Rightarrow A = \left[\frac{1}{3}x \sin 3x\right]_{0}^{\frac{\pi}{6}} \int_{0}^{\pi/6} \frac{1}{3} \sin 3x dx$	B1 M1 A1	Correct integral and limits (soi) – ft their P, but must be in radians can be without limits
$= \left[\frac{1}{3}x\sin 3x + \frac{1}{9}\cos 3x\right]_{0}^{\frac{\pi}{6}}$ $= \frac{\pi}{18} - \frac{1}{9}$	A1 M1dep A1 cao [6]	dep previous A1. substituting correct limits, dep 1 st M1: ft their P provided in radians o.e. but must be exact

8 (i) $-\pi/2 < \arctan x < \pi/2$ $\Rightarrow -\pi/4 < f(x) < \pi/4$ $\Rightarrow \text{ range is } -\pi/4 \text{ to } \pi/4$	M1 A1cao [2]	$\pi/4 \text{ or } -\pi/4 \text{ or } 45 \text{ seen}$ not \leq
(ii) $y = \frac{1}{2} \arctan x$ $x \leftrightarrow y$ $x = \frac{1}{2} \arctan y$ $\Rightarrow 2x = \arctan y$ $\Rightarrow \tan 2x = y$ $\Rightarrow y = \tan 2x$	M1 A1cao	$\tan(\arctan y \text{ or } x) = y \text{ or } x$
either $\frac{dy}{dx} = 2 \sec^2 2x$	M1 A1cao	derivative of tan is sec ² used
$or y = \frac{\sin 2x}{\cos 2x} \Rightarrow \frac{dy}{dx} = \frac{2\cos^2 2x + 2\sin^2 2x}{\cos^2 2x}$ $= \frac{2}{\cos^2 2x}$	M1 A1cao	quotient rule (need not be simplified but mark final answer)
When $x = 0$, $dy/dx = 2$	B1 [5]	www
(iii) So gradient of $y = \frac{1}{2} \arctan x$ is $\frac{1}{2}$.	B1ft [1]	ft their '2', but not 1 or 0 or ∞

9 $x = \frac{1}{2}$ $\cos \theta = \frac{1}{2}$ $\Rightarrow \theta = \frac{\pi}{3}$	B1 M1 A1 [3]	M1A0 for 1.04 or 60°
--	-----------------------	----------------------