$\left.\begin{array}{|l|l|l|l|l|l|l|}\hline \mathbf{1} & \text { (i) } & & \begin{array}{l}\arcsin x=\pi / 6 \Rightarrow x=\sin \pi / 6 \\ =1 / 2\end{array} & \begin{array}{c}\text { M1 } \\ \text { A1 } \\ {[2]}\end{array} & \text { allow unsupported answers }\end{array}\right]$

2 (i) $a=0, b=3, c=2$	$\mathrm{~B}(2,1,0)$	or $a=0, b=-3, c=-2$
(ii) $a=1, b=-1, c=1$ or $a=1, b=1, c=-1$	$\mathrm{~B}(2,1,0)$	

4(i) period 180°	B1 [1]	condone $0 \leq x \leq 180^{\circ}$ or π

$\begin{array}{ll} \hline 5 \text { (i) } & \text { bounds }-\pi+1, \pi+1 \\ \Rightarrow & -\pi+1<\mathrm{f}(x)<\pi+1 \end{array}$	B1B1 B1cao [3]	or $\ldots<y<\ldots$ or ($-\pi+1, \pi+1$)	not \ldots. $<x<\ldots$, not 'between ...'
$\begin{aligned} & \text { (ii) } y=2 \arctan x+1 x \leftrightarrow y \\ & \Rightarrow \quad \frac{x=2 \arctan y+1}{2}=\arctan y \\ & \Rightarrow \quad y=\tan \left(\frac{x-1}{2}\right) \Rightarrow \mathrm{f}^{-1}(x)=\tan \left(\frac{x-1}{2}\right) \end{aligned}$	M1 A1 A1 B1 B1 [5]	attempt to invert formula or $\frac{y-1}{2}=\arctan x$ reasonable reflection in $y=x$ $(1,0)$ intercept indicated.	one step is enough, i.e. $y-1=2 \arctan x$ or $x-1=2 \arctan y$ need not have interchanged x and y at this stage allow $y=\ldots$ curves must cross on $y=x$ line if present (or close enough to imply intention) curves shouldn't touch or cross in the third quadrant

$\begin{array}{ll} \mathbf{6 (i)} & \text { At P, } x \cos 3 x=0 \\ \Rightarrow & \cos 3 x=0 \\ \Rightarrow & 3 x=\pi / 2,3 \pi / 2 \\ \Rightarrow & x=\pi / 6, \pi / 2 \\ & \text { So P is }(\pi / 6,0) \text { and Q is }(\pi / 2,0) \end{array}$	M1 M1 A1 A1 [4]	or verification $3 x=\pi / 2,(3 \pi / 2 \ldots)$ dep both Ms condone degrees here
$\begin{aligned} & \text { (ii) } \frac{d y}{d x}=-3 x \sin 3 x+\cos 3 x \\ & \quad \text { At P, } \frac{d y}{d x}=-\frac{\pi}{2} \sin \frac{\pi}{2}+\cos \frac{\pi}{2}=-\frac{\pi}{2} \\ & \text { At TPs } \frac{d y}{d x}=-3 x \sin 3 x+\cos 3 x=0 \\ & \Rightarrow \quad \cos 3 x=3 x \sin 3 x \\ & \Rightarrow \quad 1=3 x \sin 3 x / \cos 3 x=3 x \tan 3 x \\ & \Rightarrow \quad x \tan 3 x=1 / 3^{*} \end{aligned}$	M1 B1 A1 M1 A1cao M1 E1 [7]	Product rule $\mathrm{d} / \mathrm{d} x(\cos 3 x)=-3 \sin 3 x$ cao (so for $\mathrm{d} y / \mathrm{d} x=-3 x \sin 3 x$ allow B1) mark final answer substituting their $-\pi / 6$ (must be rads) $-\pi / 2$ $\mathrm{d} y / \mathrm{d} x=0$ and $\sin 3 x / \cos 3 x=\tan 3 x$ used www
$\text { (iii) } \begin{aligned} & A=\int_{0}^{\pi / 6} x \cos 3 x d x \\ & \text { Parts with } u=x, \mathrm{~d} v / \mathrm{d} x=\cos 3 x \\ & \mathrm{~d} u / \mathrm{d} x=1, v=1 / 3 \sin 3 x \\ & \Rightarrow \quad A=\left[\frac{1}{3} x \sin 3 x\right]_{0}^{\frac{\pi}{6}} \int_{0}^{\pi / 6} \frac{1}{3} \sin 3 x d x \\ &=\left[\frac{1}{3} x \sin 3 x+\frac{1}{9} \cos 3 x\right]_{0}^{\frac{\pi}{6}} \\ &=\frac{\pi}{18}-\frac{1}{9} \end{aligned}$	B1 M1 A1 A1 M1dep A1 cao [6]	Correct integral and limits (soi) - ft their P , but must be in radians can be without limits dep previous A1. substituting correct limits, dep $1^{\text {st }}$ M1: ft their P provided in radians o.e. but must be exact

$\begin{array}{ll} \mathbf{8} \text { (i) } & -\pi / 2<\arctan x<\pi / 2 \\ \Rightarrow & -\pi / 4<\mathrm{f}(x)<\pi / 4 \\ \Rightarrow & \text { range is }-\pi / 4 \text { to } \pi / 4 \end{array}$	M1 A1cao [2]	$\begin{aligned} & \pi / 4 \text { or }-\pi / 4 \text { or } 45 \text { seen } \\ & \text { not } \leq \end{aligned}$
$\begin{array}{ll} \text { (ii) } & y=1 / 2 \arctan x \quad x \leftrightarrow y \\ & x=1 / 2 \arctan y \\ \Rightarrow & 2 x=\arctan y \\ \Rightarrow & \tan 2 x=y \\ \Rightarrow \quad & y=\tan 2 x \\ \text { either } \frac{d y}{d x}=2 \sec ^{2} 2 x \end{array}$	M1 A1cao M1 A1cao	$\tan (\arctan y$ or $x)=y$ or x derivative of \tan is $\sec ^{2}$ used
$\text { or } \begin{aligned} y=\frac{\sin 2 x}{\cos 2 x} \Rightarrow \frac{d y}{d x} & =\frac{2 \cos ^{2} 2 x+2 \sin ^{2} 2 x}{\cos ^{2} 2 x} \\ & =\frac{2}{\cos ^{2} 2 x} \end{aligned}$	M1 A1cao	quotient rule (need not be simplified but mark final answer)
When $x=0, \mathrm{~d} y / \mathrm{d} x=2$	$\begin{aligned} & \mathrm{B} 1 \\ & {[5]} \end{aligned}$	WWW
(iii) So gradient of $y=1 / 2 \arctan x$ is $1 / 2$.	$\mathrm{B} 1 \mathrm{ft}$ [1]	ft their ' 2 ', but not 1 or 0 or ∞

	$x=1 / 2$ $\cos \theta=1 / 2$	B1	
	$\Rightarrow \quad$	M1	
		A1	
		M1A0 for $1.04 \ldots$ or 60°	

